OBJECTIVE MATHEMATICS Volume 1 Descriptive Test Series

CHAPTER-14 : THE CIRCLE

UNIT TEST-1

1. The angle between a pair of tangents drawn from a point P to the circle $x^{2}+y^{2}+4 x-6 y+9 \sin ^{2} \alpha$ $+13 \cos ^{2} \alpha=0$ is 2α. Then find equation of the locus of the point P, is
2. α, β and γ are parametric angles of three point P, Q and R respectively on the circle $x^{2}+y^{2}=1$ and A is the point $(-1,0)$. If the lengths of the chords $A P, A Q$ and $A R$ are in G.P., then prove that $\cos \frac{\alpha}{2}, \cos \frac{\beta}{2}$ and $\cos \frac{\gamma}{2}$ are in G.P
3. Find the condition that chord of contact of any external point (h, k) to the circle $x^{2}+y^{2}=a^{2}$ should subtend right angle at the centre of the circle.
4. A circle in inscribed (i.e. touches all four sides) into a rhombous $A B C D$ with one angle 60°. The distance from the centre of the circle to the nearest vertex is equal to 1 . If P is any point of the circle, then $|P A|^{2}+|P B|^{2}+|P C|^{2}+|P D|^{2}$ is equal to:
5. Let $x \& y$ be the real number satisfying the equation $x^{2}-4 x+y^{2}+3=0$. If the maximum and minimum values of $x^{2}+y^{2}$ are $M \& m$ respectively, then find the numerical value of $(M+m)$.
6. Find number of values of ' c ' for which the set,
$\left\{(x, y) \mid x^{2}+y^{2}+2 x \leq 1\right\} \cap\{(x, y) \mid x-y+c \geq 0\}$ contains only one point is common.
7. If (α, β) is a point on the circle whose centre is on the x-axis and which touches the line $x+y=0$ at $(2,-2)$, then find the greatest value of ' α '.
8. The line $A x+B y+C=0$, cuts the circle $x^{2}+y^{2}$ $+a x+b y+c=0$ in P and Q and the line $A^{\prime} x+$ $B^{\prime} y+C^{\prime}=0$ cuts the circle $x^{2}+y^{2}+a^{\prime} x+b^{\prime} y+$ $c^{\prime}=0$ in R and S. If the four points P, Q, R, S are concylic, then

$$
D=\left|\begin{array}{ccc}
a-a^{\prime} & b-b^{\prime} & c-c^{\prime} \\
A & B & C \\
A^{\prime} & B^{\prime} & C^{\prime}
\end{array}\right|=0
$$

9. A variable circle passes through the point $A(a, b)$ \& touches the x-axis and the locus of the other end of the diameter through A is $(x-a)^{2}=\lambda$ by, then find the value of λ
10. A circle touches the line $y=x$ at a point P such the $O P=4 \sqrt{2}$ where O is the origin. The circle contains the point $(-10,2)$ in its interior and the length of its chord on the line $x+y=0$ is $6 \sqrt{2}$. Find the equation of the circle.

Hints and Solutions

1. The coordinates of the centre and radius of the given circle are $(-2,3)$ and $\sqrt{4+9-9 \sin ^{2} \alpha-13 \cos ^{2} \alpha}=2 \sin \alpha$ respectively.
Let the co-ordinates of $C P$ be (h, k). Clearly, CP bisects

$$
\angle T P T^{\prime}=2 \alpha \therefore \angle C P T=\angle C P T^{\prime}=\alpha
$$

Now, in $\triangle C P T$, we have $\sin \alpha=\frac{C T}{C P}$

$$
\begin{aligned}
& \Rightarrow \sin \alpha=\frac{2 \sin \alpha}{\sqrt{(h+2)^{2}+(k-2)^{2}}} \\
& \Rightarrow(h+2)^{2}+(k-3)^{2}=4 \\
& \Rightarrow h^{2}+k^{2}+4 h-6 k+9=0
\end{aligned}
$$

Hence, the locus of (h, k) is $x^{2}+y^{2}+4 x-6 y+9=0$.
2. Co-ordinates of P, Q, R are $(\cos \alpha, \sin \alpha),(\cos \beta, \sin \beta)$ and $(\cos \gamma, \sin \gamma)$ respectively. and $A \equiv(-1,0)$

$$
\begin{aligned}
\therefore \quad A P & =\sqrt{(1+\cos \alpha)^{2}+\sin ^{2} \alpha} \\
& =2 \cos \frac{\alpha}{2} \\
A Q & =\sqrt{(1+\cos \beta)^{2}+\sin ^{2} \beta} \\
& =2 \cos \frac{\beta}{2} \\
A R & =\sqrt{(1+\cos \gamma)^{2}+\sin ^{2} \gamma} \\
& =2 \cos \frac{\gamma}{2}
\end{aligned}
$$

$\therefore A P, A Q, A R$ are in G.P., then $\cos \frac{\alpha}{2}, \cos \frac{\beta}{2}, \cos \frac{\gamma}{2}$ are
also in G.P.
Hence (b) is the correct answer.
3. Equation of chord of contact $A B$ is $h x+k y=a^{2}$...(1)

For equation of pair of tangents of $O A$ and $O B$, make homogeneous $x^{2}+y^{2}=a^{2}$ with the help of

P(h, k)

$$
\begin{array}{lrl}
& & \begin{aligned}
h x+k y & =a^{2} \\
& \text { or } \\
& \frac{h x+k y}{a^{2}}
\end{aligned}=1 \\
\text { then } \quad x^{2}+y^{2} & =a^{2}\left(\frac{h x+k y}{a^{2}}\right)^{2} \\
\Rightarrow & a^{2}\left(x^{2}+y^{2}\right) & =(h x+k y)^{2} \\
\Rightarrow & x^{2}\left(a^{2}-h^{2}\right)-2 h k x y+y^{2}\left(a^{2}-k^{2}\right)=0
\end{array}
$$

but $\quad \angle A O B=\frac{\pi}{2}$
\therefore Coefficient of $x^{2}+$ coefficient of $y^{2}=0$
$\Rightarrow a^{2}-h^{2}+a^{2}-k^{2}=0$
$\Rightarrow \quad h^{2}+k^{2}=2 a^{2}$
\therefore The locus of (h, k) is $x^{2}+y^{2}=2 a^{2}$ which is a director circle.
4. From figure, we have

Equation of circle is $x^{2}+y^{2}=\frac{3}{4}$
where the centre is $(0,0)$ and radius is $\frac{\sqrt{3}}{2}$

$$
\begin{aligned}
& P A^{2}+P B^{2}+P C^{2}+P D^{2} \\
& \left(x_{1}-0\right)^{2}+\left(y_{1}-1\right)^{2}+\left(x_{1}+\sqrt{3}\right)+\left(y_{1}-0\right)^{2}+x_{1}^{2}+ \\
& \left(y_{1}+1\right)^{2}+\left(x_{1}-\sqrt{3}\right)^{2}+\left(y_{1}-0\right)^{2} \\
& \quad 4 x_{1}^{2}+4 y_{1}^{2}+8=4\left(x_{1}^{2}+y_{1}^{2}\right)+8
\end{aligned}
$$

Since x_{1} and y_{1} lies on the circle thus putting the value of $x^{2}+y^{2}=\frac{3}{4}$ in the above equation we have

$$
P A^{2}+P B^{2}+P C^{2}+P D^{2}=4 \times \frac{3}{4}+8
$$

$$
P A^{2}+P B^{2}+P C^{2}+P D^{2}=11
$$

5. $x^{2}-4 x+y^{2}+3=0$
$\Rightarrow x^{2}-4 x+4+y^{2}-1=0$

$$
(x-2)^{2}+y^{2}=1
$$

represents a circle with centre at $(2,0) \&$ radius $=1$ units

$$
\begin{array}{rlrl}
\therefore & x^{2}+y^{2} & \leq 3 \\
& x^{2}+y^{2} & \geq 1 \\
& \therefore & M & =3, m=1 \\
& M & =m=4
\end{array}
$$

6. (2) $x^{2}+y^{2}+2 x-1 \leq 0 \quad x-y+c \geq 0$

To contains only one point in common the line should be a tangent to the circle

$$
\begin{gathered}
\Rightarrow x^{2}+y^{2}+2 x+1-1-1 \leq 0 \Rightarrow(x+1)^{2}+y^{2} \leq 2 \\
\text { Centre }=(-1,0) \\
\text { Radius }=\sqrt{2} \\
(-1,0) x-y+c \geq 0
\end{gathered}
$$

$$
\begin{aligned}
d & =\left|\frac{-1+c}{\sqrt{2}}\right|=\sqrt{2} \\
\Rightarrow \quad|c-1| & =2
\end{aligned}
$$

$$
\begin{aligned}
c-1 & =2 \quad c-1=-2 \\
c & =3 \quad c=-1
\end{aligned}
$$

7. Let $(a, 0)$ is the centre c and P is $(2,-2)$ which is given Then $\angle C O P=45^{\circ}$

Since the equation of $O P$ is $x+y=0$

thus also then $\angle O C P=45^{\circ}$

$$
\begin{array}{ll}
\therefore & O P=2 \sqrt{2}=C P \\
\text { Hence, } & O C=4
\end{array}
$$

The point on the circle with the greatest x co-ordinates is B.

$$
a=O B=O C+C B=4+2 \sqrt{2}
$$

8. Let the given circle be denoted by $S_{1}=0$ and $S_{2}=0$ and the points P, Q, R, S lie on the circle say $S_{3}=0$. $P Q$ intersects both S_{1} and S_{3} and $R S$ intersects both S_{2} and S_{3}.
$\therefore P Q$ is radical axis of S_{1} and S_{3} and $R S$ is radical axis of S_{2} and S_{3}
$\therefore A x+B y+C=0$ is radical axis of S_{1} and S_{3} and $A^{\prime} x+B^{\prime} y+C^{\prime}=0$ is radical axis of S_{2} and S_{3}
Also radical axis of S_{1} and S_{2} is given by

$$
S_{1}-S_{2}=0
$$

or $\left(a-d^{\prime}\right) x+\left(b-b^{\prime}\right) y+\left(c-c^{\prime}\right)=0$
Again we know that the radical axis of three circles taken in pairs are concurrent.
we have

$$
\left|\begin{array}{ccc}
a-a^{\prime} & b-b^{\prime} & c-c^{\prime} \\
A & B & C \\
A^{\prime} & B^{\prime} & C^{\prime}
\end{array}\right|=0
$$

9. (d) Let the other end of diameter be (h, k)
\therefore Equation of circle is

$$
\begin{aligned}
& (x-a)(x-h)+(y-b)(y-k)=0 \\
\therefore & \quad \text { Centre } \equiv\left(\frac{a+h}{2}, \frac{b+k}{2}\right)
\end{aligned}
$$

Since the circle touches the x-axis
$\therefore \mid y$-co-ordinate $\mid=$ radius

$$
\begin{aligned}
& \Rightarrow \quad\left|\frac{b+k}{2}\right|=\sqrt{\left(\frac{a+h}{2}\right)^{2}+\left(\frac{b+k}{2}\right)^{2}-(a h+b k)} \\
& \therefore \quad\left(\frac{a+h}{2}\right)^{2}=(a h+b k)
\end{aligned}
$$

\therefore Locus of point is

$$
\begin{aligned}
x^{2}+2 a x+a^{2} & =4 a x+4 b y \\
(x-a)^{2} & =4 b y
\end{aligned}
$$

10. Let the new co-ordinate axis be rotated by an angle of 45° in the clockwise direction. Then

$$
\begin{aligned}
& X & =x \cos (\theta)+y \sin (\theta) \\
& Y & =-x \sin (\theta)+y \cos (\theta) \\
\text { where } & \theta & =45^{\circ} \\
\therefore \quad X & & =\frac{x-y}{\sqrt{2}} \\
& Y & =\frac{x+y}{\sqrt{2}}
\end{aligned}
$$

In $\quad \triangle \mathrm{ABC}, A C=4 \sqrt{2}$

$$
A B=3 \sqrt{2}
$$

$\therefore \quad$ Radius $=\sqrt{(4 \sqrt{2})^{2}+(3 \sqrt{2})^{2}}=b \sqrt{2}$
\therefore Equation of the circle is

$$
\begin{gathered}
(x+5 \sqrt{2})^{2}+(y+4 \sqrt{2})^{2}=(5 \sqrt{2})^{2} \\
\text { or, }\left(\frac{x-y}{\sqrt{2}}+5 \sqrt{2}\right)^{2}+\left(\frac{x+y}{\sqrt{2}}+4 \sqrt{2}\right)^{2}=(5 \sqrt{2})
\end{gathered}
$$

or $(x-y+10)^{2}+(x+y \pm 8)^{2}=100$
But, since $(-10,2)$ lies inside the circle. The equation of the circle is

$$
\begin{aligned}
& (x-y+10)^{2}+(x+y+8)^{2}=100 \\
& \text { or } x^{2}+y^{2}+100-2 x y-20 y+20 x+x^{2}+y^{2}+64+ \\
& 2 x y+16 y+16 x=100 \\
& \text { or, } 2 x^{2}+2 y^{2}+36 x-4 y+64=0 \\
& \text { or, } x^{2}+y^{2}+18 x-2 y+32=0
\end{aligned}
$$

